Fast formation of the P3-P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme.

نویسندگان

  • Libin Zhang
  • Mu Xiao
  • Chen Lu
  • Yi Zhang
چکیده

Formation of the P3-P7 pseudoknot structure, the core of group I ribozymes, requires long-range base pairing. Study of the Tetrahymena ribozyme appreciates the hierarchical folding of the large, multidomain RNA, in which the P3-P7 core folds significantly slower than do the other domains. Here we explored the formation of the P3-P7 pseudoknot of the Candida ribozyme that has been reported to concertedly fold to the catalytically active structure with a rate constant of 2 min(-1). We demonstrate that pseudoknot formation occurs during the rapid ribozyme compaction, coincident with formation of many tertiary interactions of the ribozyme. A low physiological concentration of magnesium (1.5 mM) is sufficient to fully support the pseudoknot formation. The presence of nonnative intermediates containing an unfolded P3-P7 region is evident. However, catalysis-based analysis shows these nonnative intermediates are stable and fail to convert to the catalytically active structure, suggesting that rapid pseudoknot formation is essential for folding of the active ribozyme. Interestingly, RNAstructure predicts no stable Alt P3 structure for the Candida ribozyme, but two stable Alt P3s for the Tetrahymena ribozyme, explaining the dramatic difference in folding of the P3-P7 core of these two ribozymes. We propose that rapid formation of the P3-P7 pseudoknot represents a folding strategy ensuring efficient production of the catalytically active structure of group I ribozymes, which sheds new light on the mechanism of effective ribozyme folding in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A deteriorated triple-helical scaffold accelerates formation of the Tetrahymena ribozyme active structure.

The Tetrahymena group I ribozyme requires a hierarchical folding process to form its correct three-dimensional structure. Ribozyme activity depends on the catalytic core consisting of two domains, P4-P6 and P3-P7, connected by a triple-helical scaffold. The folding proceeds in the following order: (i) fast folding of the P4-P6 domain, (ii) slow folding of the P3-P7 domain, and (iii) structure r...

متن کامل

Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding

The antimicrobial agent pentamidine inhibits the self-splicing of the group I intron Ca.LSU from the transcripts of the 26S rRNA gene of Candida albicans, but the mechanism of pentamidine inhibition is not clear. We show that preincubation of the ribozyme with pentamidine enhances the inhibitory effect of the drug and alters the folding of the ribozyme in a pattern varying with drug concentrati...

متن کامل

Monitoring intermediate folding states of the td group I intron in vivo.

Group I introns consist of two major structural domains, the P4-P6 and P3-P9 domains, which assemble through interactions with peripheral extensions to fold into an active ribozyme. To assess group I intron folding in vivo, we probed the structure of td wild-type and mutant introns using dimethyl sulfate. The results suggest that the majority of the intron population is in the native state in a...

متن کامل

Modular engineering of a Group I intron ribozyme.

All Group I intron ribozymes contain a conserved core region consisting of two helical domains, P4-P6 and P3-P7. Recent studies have demonstrated that the elements required for catalysis are concentrated in the P3-P7 domain. We carried out in vitro selection experiments by using three newly constructed libraries on a variant of the T4 td Group I ribozyme containing only a P3-P7 domain in its co...

متن کامل

Folding of the group I intron ribozyme from the 26S rRNA gene of Candida albicans.

Preincubation of the group I intron Ca.LSU from Candida albicans at 37 degrees C in the absence of divalent cations results in partial folding of this intron. This is indicated by increased resistance to T1 ribonuclease cleavage of many G residues in most local helices, including P4-P6, as well as the non-local helix P7, where the G binding site is located. These changes correlate with increase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2005